Testing Report

Group 28

Piazza Panic
By OuseWorks

Ben Harris
Joshua Gill
Niamh Hanratty
Amy Raymond
Matthew Czyzewski
Matt Rohatynskyj

PART A - Summary of Methods

A multifaceted approach was used for software testing during the development of the Piazza
Panic game to ensure our code executes as expected. This approach consists of automated
unit testing using the JUnit Testing Framework wherever possible, and manual testing where
unit testing could not be performed to evaluate the software.

Automated Testing - JUnit Testing with Headless LibGDX Backend and JaCoCo coverage

report
The JUnit Testing Framework was chosen as our automated testing method due to its wide

adoption for testing Java-based applications in the global industry. It is a relatively simple
framework in terms of writing and execution and is supported by almost all popular IDEs
(Integrated Development Environments). Furthermore, multiple features which JUnit
provides are helpful for test writing and reading. For example, JUnit provides methods called
assertions, allowing us to compare expected behaviour with actual behaviour easily. Also,
JUnit provides annotations which are syntax that allows a file of tests to be structured more
strongly to give better readability. An example of an annotation used in almost all of the tests
we have written is the @Before annotation. This annotation can be used on methods inside
the test file, to tell JUnit to execute before each test case (annotated by @Test) inside the
file.

The headless backend for LibGDX was used in the testing environment, to test the expected
behaviour of individual classes within our source code, without initialising the graphical
aspects of the game. This is because unit testing refers to the behaviour of the backend of
the game, not the front end. This is appropriate for most of our code, as we have tried to
separate the game logic from the graphical components as much as possible.

Tests were annotated with @RunWith(GdxTestRunner.class) which was an attempt at using
Mockito to mock GL20 in files with graphics using the headless backend tests, however, we
were unable to get this working as Mockito couldn’t mock the GL20.class correctly - meaning
had to use manual testing for these files.

JaCoCo is a code coverage tool which was chosen to identify the structural and statement
coverage of our tests during development. This tool produces an html file which provides a
graphical representation of the file and instruction coverage for all classes in our Piazza
Panic package. The approach we made towards code coverage was to ensure that at least
80% of the code which is able to be covered using the headless backend (no graphics
code), should be covered using the automated tests. This goal was mainly set due to the
infeasibility of obtaining ~100% coverage within the time constraints of the project.

Manual Testing - Playtesting
A manual approach to testing was required to cover the code which we couldn’t provide

coverage with automated testing utilising the headless backend of LibGDX (mainly graphical
features of the game). After research into multiple other manual testing methods, playtesting
seemed to be the most appropriate approach for the goal mentioned above, as it is used
often in the video game development industry to identify potential design flaws/ bugs which
are difficult to visualise from looking at the source code alone. For the majority of the
playtests we conducted during development, we ran the full game build on a machine to
inspect the graphical front end of the functionality of the game.

Playtesting was also used to test releases of the game, to check that the functional
requirements given in the product brief alongside those elicited during the development were
met to the correct specifications. These were tracked using the functional requirements
provided in the requirements documentation (Req1).

PART B - Test Report
JUnit Test - Writin

nit T

A ‘BasicTest’ interface was written before any tests were written as a simple structure
from which the tests could implement. This allowed the writing of tests to happen in a
quicker manner as the basic Test methods could be overridden very easily using an
IDE. For example, the basic structure of a BasicTest includes a constructorTest (to
test the instantiation of a class as a variable) and an @Before initialization method
which does any necessary computation before the class could be instantiated.

All attributes which were instantiated during test execution are kept as private fields,
preventing any unwanted access.

Throughout the duration of the writing period, multiple variations of the same test
were created to try and create variation within the input space. For example in Figure
7, the test method keyDownTests() checks multiple inputs to see if any variation
makes a difference in the rigidity of the keyDown() method.

- Ex ion Resul
On every run of the automated tests (example tests illustrated in Figures 5, 6, 7, 8), a
test report is generated (Figure 1) providing a visual representation of the areas of
code where tests passed, failed or were ignored. It also indicates the time duration
which it took for all tests to be run.
For in-development branches, the tests are available to be run on command at any
point in time, allowing developers to preserve old functionality when working on new
functionality by checking any tests which fail due to new code, allowing them to fix
these bugs dynamically during production, instead of later during manual testing.
Due to our implemented continuous integration system, all automated tests are
scheduled to run on every execution of Gradle build, creation of pull requests,
committing to a branch with an open pull request and merge of pull requests. For
these actions to complete, all tests must pass (100% success rate). This acts as a
protective guard to ensure previously implemented functionality remains undisturbed.
This system means that the main branch of the GitHub repository will always
have a test success rate of 100% unless the branch protection is removed.

The final release build of the game has an automated test success rate of 100%, meaning
that no tests failed. As all tests pass, this does throw a question about the completeness and
correctness of our tests.

Due to time constraints, the majority of the automated tests only check singular
expected and unexpected values. This means that the functionality of particular
methods in classes isn't tested with a wide assortment of input values, which is a
limitation of our tests. This means that our implementation may not be as strong as it
needs to be to deal with unusual parameters.

If more time was available for test writing, tests would be written more robustly using
multiple cases would be used including but not limited to using low and high
boundary values, alongside extreme values. Furthermore, more test cases should
test for completely invalid inputs, as this is still part of the input space.

JaCoCo Test Coverage Results

Our previously defined objective was to achieve at least 80% instruction coverage for
the code which doesn’t have function calls to graphical elements which are mainly
contained in the sub-packages ‘utility’, ‘components’ and ‘input’.

The latest test coverage report generated on these sub-packages (illustrated on
website) shows instruction coverage of 82%, 95% and 100% respectively meaning
we have met our targets in these areas. The ‘utility’ sub-package only just met the
80% target coverage, therefore if we were less limited by time it would be sensible to
improve this as much as possible.

e The ‘utility’ sub-package fails to meet the branch coverage target of 80% with only
69%. While this is still quite a large proportion of the code, ~30% of branches were
not tested. This can lead to previous functionality being broken without notifying the
developer during development which will lead to a lengthy debugging process.
Provided with more time, more test cases that fit the missed branches would be
produced within the tests that have low branch coverage, to prevent these types of
issues.

e For the other sub-packages, the instruction coverage was limited by the testing
environment not being able to mock the graphics correctly using Mockito leading to
low coverage scores. This was expected and manual tests were developed to deal
with the lack of automated tests in these areas.

Manual Playtesting Results
As mentioned previously in this document, playtesting was the method used to simulate the
functionality unit tests would test on code which couldn’t be tested using the automated
system in place, as well as general checking of the functionalities required by the product
brief as listed inside the requirements documentation.
e Testing the HUD was not possible with automated testing because of the high
amount of graphic calls, leaving us to manually test functionality that utilises the
HUD. Throughout the testing process, we were able to see how adjustments to the
code appeared to the user (i.e. the spacing of different icons). We were able to
identify the fulfilment of 96% of functional requirements.
e The only functional requirement that was not met was FR_PREP_FAIL.

Requirement ID Testing Method PASS/FAIL
(referencing Req1
document)
FR_TIMING Manual (Playtest) PASS
FR_TOGGLE_CUSTOMERS Manual (Playtest) PASS
FR_COMPLETION_TIME Manual (Playtest) PASS
FR_COMPLETION_TIME_LIM [Manual (Playtest) PASS
T
FR_HELP Automatic (Unit Test for the existence of PASS
assets) + Manual (Playtest for drawing on
screen)
FR_COMPLETION Manual (Playtest) PASS
FR_DIFFICULTY Manual (Playtest) PASS
FR_CUSTOMERS Manual (Playtest) PASS
FR_RECIPES Automatic (Unit PASS
FR_COOKING_STATIONS Automatic (Unit Test for entity creation) + PASS
Manual (Playtest for graphical

representation)

FR_INGREDIENT_STATIONS | Automatic (Unit Test for entity creation) + PASS
Manual (Playtest for graphical
representation)
FR_CUSTOMER_FLOW Manual (Playtest) PASS
FR_CONTROLS Automatic (Unit Test for functionality) + PASS
Manual (Playtest)
FR_STATION_NUMBERS Manual (Playtest) PASS
FR_CUSTOMER_TIPS Manual (Playtest) PASS
FR_MONEY Manual (Playtest) PASS
FR_DISH_PRICES Manual (Playtest) PASS
FR_COOKS Automatic (Unit Test for cook creation PASS
functionality) + Manual (Playtest for game
specific objective)
FR_MORE_COOKS Manual (Playtest for graphical confirmation) PASS
FR_MENU Manual (Playtest for graphical PASS
representation)
FR_POWER_UP Manual (Playtest for graphical powerup PASS
menu)
FR_UNLOCK_STATIONS Manual (Playtest for graphical confirmation) PASS
FR_COLLISIONS Manual (Playtest for graphical confirmation) PASS
FR_RECIPE_BOOK Manual (Playtest for graphical confirmation) PASS
FR_COUNTER Manual (Playtest for graphical confirmation) PASS
FR_SAVE_GAME Manual (Playtest for graphical confirmation) PASS
FR_PREP_FAIL Manual (Playtest for graphical confirmation) FAIL

https://ouseworks.qgithub.io/WEBSITE-ASSESSMENT-2/diagrams/testingdiagrams.html|

https://ouseworks.qgithub.io/\WEBSITE-ASSESSMENT-2/jacoco-report/test/html/index.html

https://ouseworks.github.io/WEBSITE-ASSESSMENT-2/diagrams/testingdiagrams.html
https://ouseworks.github.io/WEBSITE-ASSESSMENT-2/jacoco-report/test/html/index.html

