
Updated Requirements

Group 28

Piazza Panic

By OuseWorks (from devCharles, Group 26)

Ben Harris
Joshua Gill

Niamh Hanratty
Amy Raymond

Matthew Czyzewski
Matt Rohatynskyj



Introduction
User requirements were elicited from the assessment brief given to us which was then
followed by a client meeting, in which we asked for specifics on details included in the
assessment brief.

Within the assessment brief we were given a SSON (Single statement of need):
“You are to build a single-player game that requires managing the staff around a kitchen,
who will be preparing various dishes requested by customers coming into the Piazza
Restaurant”. This, paired with information given in the rest of the assessment brief and
the client meeting, allowed us to create a complete list of requirements which was split
into user requirements and system requirements:

● User requirements are for non-technical people involved in the process and is a
list of tasks that users should be capable of doing within the system.

● System requirements details the technical implementation including a
description of how the system will deliver the needs of the users. (System
requirements is further broken down into functional and non-functional
requirements):

○ Functional requirements are things the system must do
○ Non-functional requirements are qualities the system must have

The notation we chose to represent requirements was the Easy Approach to
Requirements Syntax (EARS) [1]. This was chosen as it reduces subjective language when
reading through the requirements and it remains consistent and easy to read. It is also
widely used in industry and in universities so it should be understood by most
individuals.

We found that following this format reduced errors and also helped us make sure we
didn’t make duplicates of requirements. On reflection, we think that this format was the
right choice as it made logical sense to order the requirements this way and therefore is
easier to read.

The requirements are presented within three tables (User, Functional, Non-functional).
This was decided as it is clearer and more succinct than any other presentation (e.g.
textual). With this approach each requirement can be given a unique key (ID), which then
can make documentation for architecture easier as requirements may be referenced by
their ID’s.
Each User Requirement is given a priority:

● Shall - must be fully implemented (Highest priority)
● Should - should be fully implemented but isn’t strictly required (Medium priority)
● May - an optional element that would be desirable but is not necessary (Low

Priority)

The functional requirements table is partially or wholly explained by a user requirement,
so each of these will link back to the first table. Along with this fit requirements have
been added, highlighting the specific criteria for the non-functional requirements to be
classes as fully implemented without issues.



User Requirements

ID Description Priority

UR_DIFFICULTY The player shall be able to play the game on
easy, medium or hard difficulty.

Shall

UR_ENDLESS The player shall be able to select an endless
mode.

Shall

UR_EXHIBIT The game is to be designed for a high flow of
users

Should

UR_GAME_PLAY This should be an easy to play open source
game, where the user has to cook some food to
then deliver to a customer

Shall

UR_GRAPHICS
The game should be designed so that different
assets are very clearly distinguishable Should

UR_SAVE The player should be able to save their
gameplay and return to it at another time whilst
the game is running

Shall

UR_SCENARIO The player shall be able to select a scenario
mode, in which they can toggle how many
customers they will have to serve.

Shall

UR_SINGLE The game should be single player e.g. offline Shall

UR_SYS_REQ The game must be able to run on most
computers

Shall

UR_USER_AGE The game must be designed for anyone from
age 5+

Shall



Functional Requirements

ID Description User
Requirements

FR_TIMING The default scenario gamemode shall take approx. 5
minutes, due to high flow of users

UR_EXHIBIT

FR_TOGGLE_CUST
OMERS

The scenario mode should let the player toggle the
number of customers.

UR_SCENARIO

FR_COMPLETION_
TIME

The game shall display the time taken to serve all
customers

UR_GRAPHICS

FR_COMPLETION_
TIME_LIMIT

When the customer has not been served within a
given time limit, the user shall lose 1 reputation
point (from a maximum of 3)

UR_GAME_PLAY

FR_HELP There will be a tutorial explaining gameplay UR_GAME_PLAY

FR_COMPLETION When all orders are completed, the scenario shall
end

UR_GAME_PLAY

FR_DIFFICULTY When selecting the difficulty, the game shall offer
support for different levels of difficulty in the game
(e.g. easy, normal, hard)

UR_ENDLESS

FR_CUSTOMERS While a customer has an order, they shall be visible
somewhere on the screen

UR_GAME_PLAY

FR_RECIPES There shall be 4 recipes, salad, burger, pizzas, and
jacket potatoes

UR_GAME_PLAY

FR_COOKING_STAT
IONS

The cooking stations shall enable preparation of
ingredients - for example cutting board for lettuce,
or grill for patty

UR_GAME_PLAY

FR_INGREDIENT_S
TATIONS

The user shall have access to unlimited amounts of
the specified ingredient from the ingredient station

UR_GAME_PLAY

FR_CUSTOMER_FL
OW

Customers shall begin arriving one at a time initially,
and then will soon arrive in groups of two or three.
They shall form a queue and be served one at a
time.

UR_GAME_PLAY

FR_CONTROLS The controls shall be exclusively mouse and
keyboard

UR_GAME_PLAY

FR_STATION_NUM
BERS

The user shall have access to 2 cooking and
ingredient stations for each cook (4 in total e.g. 2
chopping boards and two friers).

UR_GAME_PLAY

FR_CUSTOMER_TIP
S

Customers shall have a chance of giving a monetary
tip once served in endless mode.

UR_ENDLESS

FR_MONEY While in endless mode, the player shall have a
monetary balance.

UR_ENDLESS

FR_DISH_PRICES While in endless mode, dishes shall have a monetary
value and the customer shall pay the player for their
dish when it is served.

UR_ENDLESS



ID Description User
Requirements

FR_COOKS The player shall start with access to 2 cooks which
the player can switch between and which the player
can move

UR_GAME_PLAY

FR_MORE_COOKS While in endless mode, kitchen staff can be called
back from leave when there are enough reputation
points and earnings.

UR_ENDLESS

FR_MENU The game shall have a start menu where the
scenario type and game mode are selectable.

UR_GAME_PLAY

FR_POWER_UP While in endless mode, the user will be able to
unlock 5 different power ups for the chef.

UR_ENDLESS

FR_UNLOCK_STATI
ONS

While in endless mode, the game shall allow users to
unlock more stations and ingredient stations.

UR_ENDLESS

FR_COLLISIONS The entities in the game shall not overlap, (e.g. basic
physics should apply to the game)

UR_GAME_PLAY

FR_RECIPE_BOOK The game shall have some way to see the recipe that
the customers have asked for at all times.

UR_GAME_PLAY

FR_COUNTER When a dish is complete, the dish shall be able to be
delivered by being placed on the counter

UR_GAME_PLAY

FR_SAVE_GAME While in endless mode, the player shall be able to
save the game and resume at a later date.

UR_ENDLESS

FR_PREP_FAIL While in endless mode, if the player cooks the food
for too long, then the food becomes inedible and
the customer does not accept the order.

UR_ENDLESS



Non Functional Requirements

ID Description
User
RequirementsFit Criteria

NFR_DOCUMENT
ATION

The game shall be documented
completely, with comments
explaining lines of code and java
docs for classes

UR_DOC The game should be documented
well enough so that other team
members would be capable of
continuing to develop it.

NFR_DOC_MAINT
AINABILITY

The documented code shall be
easily maintainable in case of
further developments

UR_DOC Code should aim to be as
“modular” as possible so that new
features can be quickly
implemented, documented and
designed

NFR_GAME_SIMP
LE

The game shall be very easy to
“pick up and play” so almost all
new players should immediately
be capable of playing

UR_GAME_SIM
PLE

The game should be immediately
understandable, intuitive and by at
least 80% of new players (they
should all understand its concepts
and the games goals)

NFR_CONTRAST The games assets shall be clearly
discernible

UR_GRAPHICS The game should still be playable
by those who have colour vision
deficiency

NFR_SINGLE_PLA
YER

The game shall be offline and
single player

UR_SINGLE The game should have no
capability whatsoever of
connecting to the internet

NFR_SYS_REQ The game shall be designed for a
standard computer, without any
special hardware.

UR_SYS_REQ The game should be able to run on
any computer with 4gb of ram a
minimum of an i3 (7th gen or
equivalent) and at least 5 gb of
free storage

NFR_SCREEN_RESThe game shall run on different
resolution screens

UR_SYS_REQ The game should be capable of
running on a screen resolution of
a minimum of 640×480 pixels up
to any resolution

NFR_TOOLS All libraries, assets and code shall
be open source

UR_GAME_PLA
Y

The entire game should be open
source as it will need to be shared
and distributed. Therefore
anything that is licensed must be
able to be shared and distributed
by the university and its students.

NFR_USER_AGE The game shall have no reference
to swearing, violence or any
graphic content

UR_USER_AGE This game should aim to not
offend a minimum of 99.5% of
individuals playing this game and
should be playable by anyone of
any age (including children)



ID Description
User
RequirementsFit Criteria

NFR_APROACHA
BLE

The game shall be appealing to a
wide demographic of users

UR_USER_AGE
UR_GRAPHICS

Over 60% of Individuals aged 5-80
should be able to look at the game
and agree that it is appealing and
have a desire to play it

References:
[1] Easy Approach to Requirements Syntax (EARS)
(Alternate link / description:
https://www.jamasoftware.com/requirements-management-
guide/writing-requirements/adopting-the-ears-notation-to-improve-requirements-engin
eering)

https://alistairmavin.com/ears/
https://www.jamasoftware.com/requirements-management-guide/writing-requirements/adopting-the-ears-notation-to-improve-requirements-engineering
https://www.jamasoftware.com/requirements-management-guide/writing-requirements/adopting-the-ears-notation-to-improve-requirements-engineering
https://www.jamasoftware.com/requirements-management-guide/writing-requirements/adopting-the-ears-notation-to-improve-requirements-engineering

